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J. Phys. A: Math. Gen. 14 (1981) 2609-2624. Printed in Great Britain 

Algebraical confinement of coloured states 

J Rembielinski 
Institute of Physics, University of LWL, 90-136 LWi, Narutowicza 68, Poland 

Received 13 November 1980 

Abstract. A mechanism of the algebraical confinement of colour based on the quaternionic 
structure of the space of states is investigated. A new dynamical interpretation of the colour 
group SU(3), is given. 

1. Introduction 

The problem of quark and gluon confinement is one of the most important and 
mysterious questions of particle physics. Quantum chromodynamics is the candidate 
theory for the description of this phenomenon. The special features of the interaction 
maintained by the massless gluons, such as strong infrared divergencies, are believed to 
provide the confinement of the coloured states. However, quantum chromodynamics is 
not yet a complete theory and this dynamical mechanism is rather more a hypothesis 
than fact. It is also possible that the answer to this question is completely different and 
lies rather on the ‘kinematical’ than the dynamical level. The solution may be based on 
the change of the language i.e. on the interpretation of states, observables etc different 
from the standard one. This point of view is represented by Giinaydin and Giirsey 
(1973a, b, 1974) Giinaydin (1973,1976), Giirsey (1974, 1976), Giinaydin et a1 (1978), 
Ruegg (1978) and Rembielinski (1978). The scheme of Gunaydin and Giirsey is based 
on the identification of the space of states with an octonionic Hilbert space. It was 
expected that the octonionic structure of the underlying Hilbert space implies the 
algebraical confinement of colour states. However, in this framework we have dealt 
with some pathologies like unobservability of two-fermion states (Kositiski and 
Rembielinski 1978). This follows from the over strong conditions resulting from the 
octonionic structure of the theory. For this reason in the papers by Rembielinski 
(1980a, b) a less restrictive scheme based on the quaternionic Hilbert space (QHS) was 
analysed. As is well known the study of quaternion quantum mechanics was under- 
taken by a number of authors (see, for example, Emch 1963a, b, Finkelstein et a1 1962, 
1963a, b, Jauch 1968a, b). However, the physical content of the quaternionic theories 
depends strongly on the appropriate association of the pure states with rays and 
definition of the tensor product of the QHS. 

The purpose of this paper is to give a systematical analysis of the quaternionic theory 
proposed in the papers by Rembielinski (1980a, b). We start with a brief survey of the 
QHS formalism in 0 2. In 0 3 we investigate the question of association of the pure states 
with rays (projectors) in QHS. This problem follows from the possibility of coexistence 
of three different geometrical structures in QHS: real R, complex U2 and quaternionic Q 
and consequently with three possible projective geometries. The requirement of the 
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uniqueness for the construction method of the multiparticle states leads to the pref- 
erence of complex and real geometries. The real case seems to be rather unattractive 
because of well known reasons (Stuckelberg 1960, Stuckelberg and Guenin 1961 a, b, 
Jauch 1968a, b; for the experimental test see Peres 1979, Rembielinski 1979). There- 
fore the pure states are identified with the complex rays in QHS. The tensor product 
definition of QHS (Rembielihski 1980a, b) is investigated in detail (see § §  3,4) .  It is 
remarkable that the form of the tensor product of QHS is in general, dependent on the 
structure of the symmetry group of the theory. The class of the groups and represen- 
tations which are admissible with respect to the quaternionic structure (Rembielihski 
1980a, b) is extended to the nonlinear realisation case. Section 5 is devoted to the 
discussion of physical consequences of QHS formalism like splitting of the space of states 
on the observable and unobservable sectors, the superselection rule caused by this fact, 
a new dynamical interpretation of the colour group and its consequences. 

2. Some mathematical notions 

In this section a brief survey of the QHS formalism is given. 

2.1. The quaternion field 

As is well known, the Frobenius theorem states that the only finite dimensional division 
algebras over the field of real numbers are: real numbers themselves, complex numbers 
and quaternions. Moreover, the real and complex numbers form the subfields of the 
quaternion field. Thus the quaternions occupy an exceptional position in mathematics. 

A real quaternion a = eoao+ea =ecLap (for the convention see Rembielihki 
(1980a, b)) can be also represented in the symplectic form a = e d o + e l A l  =e,A, 
where A. = eOao +e3a3 and A = eoal - e 3 ~ 2 .  Note that the A, belong to the subfield 
C(eo, e 3 )  of Q isomorphic to the field of complex numbers (eo - 1, e3 - fi). All other 
choices of C c C! are equivalent to C(eo, e3)  because S 0 ( 3 ) ,  the automorphism group of 
Q, acts transitively on the unit sphere. In the following we use the notions of R, C, D and 
Q conjugation of Q: 

C, =identity 

Cc, complex conjugation (automorphism) e$c - e $  = e o ,  e? = e l ,  e t  = -ez, 

C,, automorphism defined by e t D  =go =eo, 2, = -el, e ' ~  = -ez, e'3 = e3 

C,, quaternionic conjugation (anti-automorphism) egQ =CO = e o ,  Zk = -ek, 

e3 e: = -  

k = 1, 2, 3. 

By definition cR = C,, cc = CD, c, = C,. 

2.2. Quaternionic Hilbert space 

As was mentioned in the introduction, the quaternionic Hilbert space has been used in a 
number of papers. In this article we formulate the QHS axioms in a fashion which is 
equivalent but independent of the choice of specific geometry (real, complex or 
quaternionic). A quaternionic Hilbert space 2, is a linear vector space over the field of 
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quaternions Q. In this space we introduce the A valued (A = R,C or Q) scalar product 
(f, g ) A  defined for all f, g in XQ by the axioms 

( f , g + h ) A = ( f , g ) A + ( f , h ) A  

(f, g ) z A  = ( g ,  f ) A  

(f, fa )A = $(a + a ) I f 1  where lfli = (f, f ) ~  2 0 

and l f l A  = 0 is equivalent to f = 0 

( f , g a ) A = ( f , g ) A a  f o r a  EA. 

In addition we postulate the completeness of XQ i.e. any Cauchy sequence {hn}, 
h, E RQ, defines a unique limit h E XQ such that lim,+,alhn - h I A  = 0. The above axioms 
are consistent with the properties of the A-scalar product in the quaternion algebra (see 
the appendix). It is important that a fixed A-geometry induces all others via the formula 

3 

(f, g ) A = $  1 {$(e+ +eEB)(f$(ep +e?), g)B+[$<ep +eEa)(f$(ep +e>), g)Bl"") (1) 
p = o  

where A, B = R, C or Q. Using the above relation it is immediately obvious that the 
weak topologies induced by A-scalar products are equivalent. Similarly all strong 
topologies are equivalent too. In particular l f l R  = = I f l a  / f l  for every f E RQ. 

2.3. Linear manifolds and linear operators 

A subset MA of the quaternionic Hilbert space XQ is called an A-linear manifold if 
f, g E MA implies fa + g p  E MA where a and p belong to the field A. We remark that the 
notion of the closed A-linear maniiold and the subspace of XQ are equivalent only for 
Q-linear manifolds. The A-linear operator L is defined as an A-linear mapping of the 
manifold M A c X Q  (domain) into XQ. The A-adjoint operator Lt is defined by the 
standard formula (Lf, g ) A  = (f, L + g ) A .  As usual we can define &Hermitian (eventually 
A-self-adjoint) and A-unitary operators by the rules 

(Hf, g ) A  = (f, Hg)A (u.3 g ) A  (f, u - ' g ) A  

and appropriate choice of the domain. The notions of the norm, continuity, bounded- 
ness etc of operators can be introduced in a standard way. In particular the projectors 
on the closed A-linear manifolds are bounded A-self-adjoint. The A-antilinear opera- 
tor K is defined by 

K (fa + gp 1 = (Kf)a + (Kg)P 

where a,  p E A. Following Jauch (1968a) we define an A- semi-linear operator T by the 
formula 

T(fa +gp)=(Tf)a"+(Tg)Ps 
where a,  p E A and s is an automorphism of A. 

linearity implies R linearity. However the converse statement is not true. 
Finally, we note that Q linearity (Hermiticity, unitarity) implies d= and R linearity, C 

2.4. Complex decomposition of QHS 

Analogous to the complex (symplectic) decomposition of quaternions from Q there 
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exists the corresponding decomposition of vectors in XQ. In order to express this in a 
formula let us implement the conjugations Cc = C and C, =D by the appropriate 
involutions in %fo as follows 

Cdf4 1 = (CaS)4 
(2) 

c A ( f  + g )  = CAf + C A g  

C 2 = f  (CAf, C A g h  = (f, g)R* 
Here A = C or D. From equations (1)-(2) we see that Cis  C anti-unitary, D is @ unitary 
and C Hermitian. Both C a n d D  are R unitary and Iw Hermitian. We shall denote them 
by Cy =f*, Of =f respectively. Now, the @ projectors II, = :(I * D )  split Xo into two 
C-linear, mutually C-orthogonal manifolds M,. Thus Xo = M+ +M- and appro- 
priately every vector f E XQ has the decomposition f = f+  +f-. Defining f+ =foeo and 
f- = f :e we have 

f =foeo+fTe1 (3a 1 

f = eofo + e  d1 = eJ,. ( 3 b )  

Note that fe, cy = 0, 1, satisfy the 'pure complexity' condition f ,  =fa and therefore in a 
concrete realisation they are C valued. For this reason the decomposition (3) is called 
the symplectic representation of vectors from the QHS. Using the formula ( U ,  he& = 
- ( h , ~ e ~ ) ~  obtained from the geometrical axioms of the QHS, we can rewrite the 
@-scalar product in the form 

or in a realisation of QHS as a space of Q-valued functions 

(f, g ) c  = (fo, g0)c + ( f l ,  g1)c. (4) 

Note that this form is invariant under U(2), unitary group transformations of the 
components fa and g,.  

2.5. The quaternionic group 

It is easy to see that eight operators *Ew defined by 

* E d  =f (*e ,  1 ( 5 )  
form a discrete group-the so-called quaternionic group (Hamermesh 1962). As is 
well known this group possesses one faithful (two-dimensional) and three homomor- 
phic (one-dimensional, abelian) representations (except for a trivial one). Further- 
more, the direct product of the odd number of the faithful representations contains only 
faithful ones in its decomposition while the even product decomposes on the abelian. 
homomorphic representations. 

The action ( 5 )  of the operators E, can be realised in the symplectic representation 
(3) as the (left) action on the components f, (eo,  e 3 ) .  The explicit form of (E,)ap is as 
follows: 

Here E = (-4 A) and C denotes the above introduced operator of complex conjugation. 

E o = I  E ~ = - E C  E 2  = e3&C E 3  = e31. (6) 

2.6. Connection with the complex Hilbert space 

If we restrict ourselves to the complex geometry (complex scalar product) and to the 
multiplication of vectors by complex numbers from @ then the geometrical and 
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topological structure of XQ is isomorphic to the corresponding one of the complex 
Hilbert space (see, for example, Rembielinski 1980a, b). In fact, if the field of scalars is 
restricted to @ then the postulates of the QHS with complex scalar product have the 
standard complex Hilbert space form. The definitions of the C-linear manifold, 
C-linear, Hermitian and unitary operators also coincide. Taking into account the 
symplectic decomposition of XQ we see that with every vector f = eJa (eo, e3)  E XQ can 
be associated a complex vector f = (ki;;;!) belonging to the complex Hilbert space Xc. 
Thus Xc = X+ + X- where the complex subspaces X+ are associated with the C- 
manifolds M ,  of XQ. The quaternionic units eo and e3 are represented in Xc by 1 and 
i = a. The scalar product in Xed, has the form (f, g )  = (fo, go) + (fl,  SI). Completeness 
of XQ implies completeness of Xc. Furthermore, in Xc the multiplication by quater- 
nions can be implemented by E, via the formula 

where q = e,q, and as follows from equation (6) E, are represented by 

Eo=I E = -ia2C E2= - (T~C E3 = 2. (8) 

Here C denotes the complex conjugation in Xc. The involution D is represented by u3 
(ak are the Pauli matrices). The vectors f = (ff:') form the two-dimensional represen- 
tation of the above mentioned U(2), group. 

The above results can be derived with more mathematical rigour by considering the 
space of the @-linear, continuous functionals over QHS. Because the QHS postulates 
reduce to the complex Hilbert space ones if we restrict ourselves to the multiplication by 
complex scalars and to the complex scalar product, the Hahn-Banach and Riesz 
theorems (see, for example, Yosida 1974) hold. Therefore with every vector f E XQ 
there is associated a @-linear continuous functional 9 by the formula 9 ( g )  = (f, g)@. 
According to the standard procedure, in the pre-Hilbert space of the C-linear 
functionals we.define the scalar product of two functionals 9 and 9 as (9, 9) = (g,f)@. 
The multiplication by quaternions we introduce by the formula 

( % ) ( g )  = (fq*, g)c 

for every g E XQ. It is easy to see that this space is isomorphic to the Xc defined above. 

2.7. The role of the U(2), group 

At the end of § 2.4 it was mentioned that the @-scalar product in QHS is invariant with 
respect to transformations of the U(2), group. Under action of this group the 
components fa of f behave as a U(2), doublet. From equation (1) it follows that this 
group also leaves the R-scalar product invariant while for SU(2), c U(2), the Q-scalar 
product remains unaffected. Moreover SU(2), define the so-called collinear quater- 
nionic multiplication (Finkelstein et a1 1963a, b) by the identification a0 and - ia  (in X. 
notation) with the quaternionic units eo and e acting from the left. Furthermore, SU(2), 
is connected with the multiplicative group SU(2)Q of Knit quaternions, acting from the 
right, by the equivalence transformation T = (1/d2)(ao+ia3)(g y ) .  Note that the 
quaternionic group (6) belongs to SU(2)Q. 

Summarising this section it is sensible to stress that in view of equation (1) and the 
equivalence of all weak (strong) QHS topologies a concrete choice of A-scalar product 
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(R, C or Q) in the axioms of the QHS is immaterial from the formal point of view. 
Nevertheless, as we see below, this question is important for the physical applications of 
the QHS formalism. Furthermore, we take notice that the language of the complex 
Hilbert space X c  defined in 8 2.6 is more useful for formulating the quantum mechani- 
cal notions and, as we see, for the explicit definition of the tensor product of QHS. 

However, the more genuinely quaternionic notions, like those connected with Q- 
geometrical structure of QHS and preservation of the algebraical one in the tensor 
product, are less natural on this ground?. For this reason we shall use interchangeably 
both ( X ,  and X c )  descriptions. 

3. Tensor product of QHS and physical states 

The problem of the tensor product of QHS was analysed by Finkelstein et a1 (1962) 
under the assumption that the pure states are identified with quaternionic rays$. It was 
claimed that there does not exist a satisfactory definition of the product states-a 
unique tensor product of QHS cannot be defined. In the present paper we investigate 
this question from a different point of view (see also Rembielinski 1980a, b). Let us 
denote a product vector byfl  xf’ x . . . x f N  wherefk E X k ,  As usual, the distributivity 
condition is assumed 

f ’ x  . . .  x ( h k + g k ) x  . . .  x f N  = f ’ x  . . .  x h k x .  . .  x f N + f ’ x  . . .  x g k  X . . . X ~ ” ’  (9) 

for every k = 1, 2 , .  . . , N. It is obvious that the physical content of the theory is 
determined by the identification of (pure) states with rays in the QHS. However, three 
possibilities exist because we can associate states with quaternionic, complex or real 
rays. Let us assume that states are identified with A-rays (A = R, C or Q). Then the 
vectors f’a f’a ’. . . and f N a N ,  where a E A, determine the same states as f’, f 2 ,  

. . . , fN, respectively. Therefore, the product vectors f’a xf’a x . . . x f N a N  and 
f’ X f ’  X . . . X f N  must determine the same state in X &  x X k  x . . . x 2;. Thus under the 
condition that the product space is a linear vector space and states, as formerly, are 
identified with rays, we must have 

f’ X f ’  x . . . x f k a  x . . . X f N  = (f’ X f 2  x . . . X f k  x . , . XfN)CYTk (10) 

for every k = 1, 2, . . . , N. Here a E A while aTk belongs to the field of scalars of the 
product space. From equations (9)-( 10) we obtain 

i.e. the subfield W of the field of scalars of the product space is homomorphic to A. 
However, because of the Frobenius theorem (see § 2.1) this homomorphism must be an 
isomorphism. Furthermore, from equation (10) we have 

f’ x * . . X f k  (ap) x . . , X f N  = (f’ x . . . X f k  x . . . XfN)(aP)Tk 

t An analogous situation arises if the structure and the tensor product of the complex Hilbert spaces are 
described with the help of the real Hilbert space language. 
i A real, complex or quaternionic ray is defined as the equivalence class of vectors of the form fa, where 
f c  XQ is fixed while a ER, C or Q respectively. 
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and simultaneously 

f ’ x .  * . x f k ( a / 3 ) x .  * . X f ’  x . .  .XfN = f ’ X . .  .Xfka x . .  . x  f i p T ; ’ x * ,  . x  f” 

= (f’  x . . . X f k  x .  . . X f ’  x . . . x fN)pT“aTk. 
Therefore 

(ap)T“ = @a)T”. (12) 
Because ‘ T ~  is an isomorphism then from equation (12) it follows that the field A must be 
abelian i.e. A = C or R. Consequently the pure states can be associated with complex or 
real rays only. In the following we restrict ourselves to the complex case. The 
preference for the complex variant of quantum theory follows from the well known fact 
that for the real case the complex structure must also be introduced to guarantee the 
correct implementation of the classical Poisson bracketts (Jauch 1968a, b, Mackey 
1963, 1978). 

Now, with the help of the relation (10) the multiplication by complex numbers is 
defined in the product space. In order to determine the multiplication by quaternions let 
us consider the representation of the quaternionic group in X& X . . . X XG 
D(*E,)( f ’x . .  .xf”)=*E,(f’x. .  . x f“ )=( iE ,J ’ ) x . .  . x ( i E J N ) .  (13) 
Note that the representation of SU(2), is defined as 

D ( q ) ( f ’ x .  . . X f ” )  =f’q x . .  . xf”q 141 = 1. 
As was mentioned in Q 2.5, for N odd we obtain a faithful representation of {*E,} and 
consequently it is possible to define the multiplication by quaternions as follows 

(14) 

Here q = e,qp, q, E R and N is odd. Note that because of equation (12) it is impossible to 
define multiplication by quaternions as 

f ‘  x . . . x f k q  x . . , X f N  = (f’ x . , . XfN)qT” 

for every k = 1,2 ,  . . . , N. It is also important that (f’ x . . . x f N ) q  (see equation (14)) is 
not equivalent to f ‘q x . . . x fNq  (D (4) define a representation of Q as the multiplicative 
group rather than the field one). 

On the other hand, for N even +he representation of {*E,} is abelian (homomor- 
phic) and thus it is impossible to introduce the multiplication of vectors by quaternions. 
Therefore in this case the product space is a complex linear vector space?. 

In § 2.7 the role of the group SU(2), in the structure of QHS was stressed. In 
particular, the group SU(2), of unit quaternions connected with SU(2), by the similarity 

? Following Bourbaki (1974) the tensor product of modules defined over a non-commutative ring A is 
introduced as the product between a right and left A module. As a result we obtain a 2 module (Z is the set of 
integers). This definition can be generalised to the case of a bi-module: If M(AB, is an (A,  B) bi-module i.e. it 
is a left A module and right B module, then 

is an (A, C )  bi-module. Because the QHS can be equipped with the (R, Q) bi-module structure, the resulting 
space is real (even N )  or quaternionic (odd N ) .  However, we must modify this definition because in our 
formalism the pure states are the complex rays i.e. the even product of the QHS should be a complex space. 
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transformation T (9 2.7) remains unaffected the quaternionic rays in the QHS or 
equivalently every Q manifold is invariant under the action of this group. In order to  
preserve the quaternionic structure as much as possible we demand that in the product 
space the role of SU(2), is the same as in the QHS. Precisely, this denotes that the 
representation of SU(2), in XA x . . . x ai9: should commute with every C-projector? II 
which commutes with the operations E, defined in equation (13). The inverse state- 
ment is also true because E, belong to SU(2),. In other words, the quaternionic groups 
{*E,} and SU(2), should have the common commutant in the product space, namely a 
common set of operators which is spanned by the intertwining operators of the 
(reducible) representation of {*E,} or SU(2),. 

Now, for clarity, we reformulate the above conditions in the complex Hilbert space 
language (9 2.6). Firstly, because of the equivalence of the SU(2), and SU(2), descrip- 
tions we can formulate the last condition as follows. The representations of SU(2), 
(exp iqJ)  and the collinear quaternionic group (*ek = exp(*i.rrJk), *so = * I )  should 
have a common commutant in the product space. Thus for even products of QHS the 
only admissible representations of SU(2), form a direct sum of scalars (1) because in this 
case the representation of the (collinear) quaternionic group is abelian (9 2.5). For odd 
products of QHS the representation of the quaternionic group is a direct sum of 
two-dimensional faithful irreducible representations and consequently the admissible 
representations of SU(2), contain the SU(2) doublets only. Secondly, the most general 
product of XQ satisfying the other conditions discussed above, like equations (9)-( 10) 
for A = @, coincides with the tensor product of the complex Hilbert spaces. Therefore 
the most general product of QHS satisfying all the requirements discussed should be 
defined as follows (Remblielinski 1980a, b) 

Here 0 denotes the standard tensor product while II projects on the space of the 
admisGble representations of SU(2),. The complex scalar product in X& x . . , x X; is 
induced by the scalar product in X& 0. . . 0 Xg. It satisfies the desired inequality 
I f '  x . . . x f N  1 s I f ' (  x If'I x . . . x kN 1 ( J a k h  :968a, b). With respect to this scalar 
product the obtained pre-Hilbert space can be completed. For odd N the other scalar 
products can be derived from formula (1). 

It is remarkable that our definition (15) satisfies the naturality condition. In a 
concrete realisation of QHS, as a space of Q-valued functions, the product vectors are 
linear combinations of the quaternionic products of vectors belonging to the QHS. For 
the product X& X Xi = II(X& 0 Xi), for example, the operator II projects on the 

singlet of SU(2),: 2 x 2 = II(2 0 2)  = II(3 0 1) = 1. Thus the product vectors have the 
form 

c 

wherefk E X& and 
form (16a) becomes 

is given in equation (6). The scalar product of two vectors of the 

(16b) 1 1  2 2  cu, $I@ = 3E,,'Epp'(fa, g, , )c ( fp ,  gp,)c.  

t For the odd product of the QHS this condition reduces to the obvious requirement of commutativity between 
SU(2)o and every 0 projector. 
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For the product X& x X& x XL of three copies of the QHS, the resulting space, is 
essentially quaternionic because 2 x 2 x 2 = n(2 0 2 0 2) = n(40202)  = 2 0 2 .  The 
product vectors can be represented as follows 

a'P'y' 1 2 3 
VaPr = r L , Y  f " ! f P ! f Y '  

where 
p & ' Y ' =  s$j$'s;' -'(6"'&Y' 

~ " P Y  
P '8 Y '8" ' + &j" '6P ' + 8: '8" '8 Y '  + 8; '$'8$ ' + SZ'8,p 'a;',. +a" P Y P Y  P Y  

(V, x )c  = c n:;y'(f:> g:f)c(f;, g;,)c(f;, SPdc. 

The scalar product becomes 

"PY 
' p  'y ' 

In this case (in general for odd N )  the product vectors and its scalar product can be 
rewritten in the symplectic form (3)-(4) with the help of the generator J 3  of SU(2),. In 
the general case, if the product vectors are of the form 

(17a) P P N  1 N 
q a , . . a ,  =rIa;:::aNfp, * .  . fp ,  

then the scalar product reads 

Finally we note that our definition (15) of the QHS tensor product applies also to  the case 
if some Hilbert spaces in the product (15) have the 'reduced' quaternionic structure (i.e. 
are SU(2), singlets and carry an abelian representation of the quaternionic group). 

4. Generalisation 

Now for the further applications we generalise the concept of the QHS. Because the QHS 

formalism admits also the complex Hilbert spaces with reduced quaternionic structure, 
therefore we should consider the direct sum of the QHS and the complex space?. In such 
sums, vectors from the quaternionic sector are multiplied by quaternions from Q 
whereas vectors from the complex one are multiplied by complex numbers from U2 c Q. 
Thus we have to deal with a Hilbert module rather than the Hilbert space, defined over 
the ringt (Q, 62). Instead of the Hilbert module we can speak of the complex Hilbert 
space with suitable structure, namely the underlying space of the direct sum of one- and 
two-dimensional representations of the SU(2), group. Note that in the Hilbert module 
under consideration it can be possible to introduce only complex (or real) non- 
degenerate geometry. This follows from the fact that the ring (Q, C) contains only 
complex or real fields ((e, e)  or (R, R)). In the space introduced above we can consider 
an invariance group .G of the complex scalar product containing U(2), 3 SU(2), as the 
subgroup. The group G will be identified with a symmetry (eventually broken) of the 
physical theory. For consistency we must demand that the product space is the 
underlying one for this symmetry group G. It is obvious that to be in agreement with 

t Direct sum of modules is discussed in Bourbaki (1974). 
2 The elements of the (Q, 6)) ring have the form ( z  ",, q E Q, a E 6). 
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definition (15) of the QHS tensor product, the admissible representations D (G) of G can 
contain the singlets and doublets of SU(2), only, namely 

D (G) J. SU(2), = (02) 0 (01). (18) 

Thus the definition (15) of the QHS tensor product should be rewritten in the form 

X 1 X X 2 X . .  . x X N  = n ( X 1 o x Z 0 . .  C C . O X e " )  C (19) 

where the X k  are the underlying spaces of the admissible representations of G and II 
project on the admissible subspace in the standard complex tensor product (0) of the 
X k .  In Rembieliriski (1980a, b) the classification problem of the admissible griups and 
their representations was analysed. It was found that the linearly realised group 
G 3 U(2), must be of the form G = GF x G, where G, is simple and SU(2), c G,. If some 
reasonable physical conditions hold (like the validity of the quark hypothesis) then the 
only admissible G, are the special unitary groups SU(3r), where r is odd. Furthermore, 
it was shown that the set of admissible representations of SU(3r), contains only scalar 
representations, a ( : r ) -  dimensional one and its conjugate. For r = 1 i.e. for G, = SU(3), 
the admissible representations (except the trivial one) coincide with the basic represen- 
tations 3 and 3*. 

The class of the admissible Lie groups can be extended if we admit the nonlinear 
realisations. As is well known, nonlinear realisations of a group G are induced by the 
so-called stability subgroup H which is realised linearly (Coleman et a1 1969, Isham 
1969, Salam and Strathdee 1969). This denotes that the nonlinear (irreducible) 
realisation of G is determined by a linear (irreducible) representation of H. Therefore 
for G 2 H = GF x SU(3r), the nonlinear realisations of G induced by admissible 
representations of SU(3r), are admissible too. 

5. Observable and unobservable states. Observables and symmetries 

This section is devoted to some physical consequences of QHS formalism. 

5.1. States 

As was mentioned in § 3, pure states are in our formalism associated with complex rays 
from QHS. Therefore, we must formulate the quantum mechanical notions (like 
probability transitions, observables etc) within the complex geometry framework. In 
Rembielihski (1980a, b) it was shown that the observable states (i.e. states of an 
observable physical system) can be eventually associated with the SU(2), singlets only. 
In fact, from equation (16a) it follows that the product state constructed from two 
doublets f' and f 2  has the form xap = (l/J2)(f:fg -fbfz)  and thus the two-particle 
state ,yea is equal to zero irrespective of the detailed specification of f' and f 2 .  This 
feature is inadmissible for observable systems because a physical system composed 
from observable subsystems should also be observable i.e. the set of its possible states 
should be non-empty. The above argument has the following motivation. The notion 
of the physical system is equivalent on the quantum mechanical ground to the 'set of all 
states of this system' or in the group theoretical language, for elementary systems, to the 
'set of all states obtained by action of the space-time symmetry group (PoincarC, 
Galilean . . .) on a fixed state of the system (on the state of the system at rest, for 
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example)’ i.e. an elementary system is represented by the orbit of the space-time group 
in the Hilbert space of states? (Barut and Rqczka 1977). A system formed from at least 
two observable subsystems (particles) must occur in bound and/or scattering observable 
states $ because it carries non-vanishing observable quantum numbers such as the four 
momentum4 for example. Therefore the Aristotelian law of the excluded middle 
implies that non-existence of the two-component system (+ the set of its possible states 
is empty) formed from two copies of an elementary subsystem must be interpreted as 
unobservability of the latter i.e. it can eventually occur in reality in the composed 
systems only (other than the two-component mentioned above). 

Note that the above mechanism of confinement off remembers the Pauli principle. 
However for observable fermions, the two-fermion system is also observable because 
the set of possible two-fermion states is non-empty : only some exceptional two-fermion 
states are forbidden by the Pauli principle. For this reason our confinement mechanism 
does not contradict the Pauli exclusion principle. 

In conclusion, the doublets of SU(2), cannot be identified with observable states. 
Because the QHS formalism admits SU(2), singlets and doublets only, the observable 
states should be associated with SU(2), singlets. For admissible SU(3r), groups this fact 
implies the analogous property (Rembielinski 1980a, b): SU(3r), singlets only are 
observable whereas the admissible (3r’)-dimensional multiplets must be associated with 
unobservable particles. Because the (“7- dimensional representation does not coincide 
with the (3r)’ - 1 -dimensional adjoint representation of SU(3r),, this multiplet should 
be identified with quarks. Consequently, because of the unobservability of the SU(3r), 
degrees of freedom this group should be identified with the colour groupl). Note that for 
SU(3r), singlets (observable states) the tensor multiplication rule (19) reduces to the 
standard one. 

A question arises: how to distinguish between the possible candidates for physical 
colour group. At least for three reasons the SU(3), group is preferred: 

(i) Only for SU(3), does the quark multiplet span the self-representation space 
3(3*) of the colour group. 

(ii) The above feature minimalises the number of colours to three. In the general 
SU(3r), case this number equals the dimensionality of the quark multiplet: n = 
(3r)!/r!(2r)! i.e. for r > 1, n > 84. 

(ii) If we take into account the flavour degrees of freedom then the parameter 
R = [a(e+e-+ hadrons)]/[a(e’e-+ p+p-)] becomes R ( r )  = n(r)I;(q~,,,,,,)’. Thus for 
four (U, d, s, c) flavours R ( r )  = n (r)$ i.e. for r > 1 we obtain the unacceptable value 
R >93. 

5.2. Observables 

As was mentioned above, the quantum mechanical notions should be formulated within 
the complex geometry framework. Therefore we associate the physical observables 
with the C-self-adjoint operators. Moreover we demand that in the observable sector 

t Analogous to classical mechanics where a mechanical system is represented by all points of its phase space. 
f In the field theory framework, observability of scattering states is exemplified by the clustering property of 
the Wightman functions. 
8 This follows from observability of subsystems and the additivity of the four momentum. Note that this 
composed system should at least interact with the gravitational field. 
/I It is interesting that SU(3r),, r odd, was proposed by Kingsley (see Greenberg and Nelson 1977) as an 
alternative way of introducing colour degrees of freedom. 
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of the space of states the laws of ordinary quantum mechanics hold. This is consistent 
with definition (19) of the tensor product of the QHS. On the other hand, the existence 
of the unobservable states implies the superselection rule: the matrix elements of 
observables between observable and unobservable states must vanish. This is 
equivalent to the non-existence of the physical superposition of the observable and 
unobservable states. From the group theoretical point of view, this superselection rule 
is generated by conservation of ‘triality’. In fact, the (3r”)-dimensional admissible 
representations of SU(3r), (associated with unobservable states) are contained in the 
expansion of the direct product of r self-representations of this group. Because the 
centre of SU(3r), is composed of elements of the form exp(2kir/3r) (i.e. it is isomorphic 
to the cyclic group Z3r) then the centre of such an admissible representation contains 
only elements of the form [exp(2kir/3r)lr = exp(2kir/3) i.e. it is isomorphic to Z3. 

Thus with every admissible representation we can associate its triality conserved 
modulo three: triality 0 with the singlet of SU(3r),, triality *l with two mutually 
conjugate (:”)-dimensional representations. So the observable states have triality zero. 
The triality operator must commute with every observable and every canonical 
transformation. As the consequence of the above discussion the average value (Cl) of an 
observable fl in a state $ has the physical sense only in the observable sector of 2. 

At this point it is sensible to remark that the idea of the split space of states is nothing 
new-it is assumed in each theory with the Pauli-like principle: observable states = 
colour singlets. Octonionic theories (see 3 1) are constructions of this sort for example. 
On the dynamical level this question arises in quantum chromodynamics. 

5.3. Symmetries 

Of great importance for the physical applications of the QHS scheme is the symmetry 
problem. It is reasonable to demand that each exact symmetry group Go of the physical 
theory should be realised in the space of states? as a set of transformations with both 
active and passive interpretation, at least on mathematical grounds, and which does not 
destroy the algebraical and geometrical structure of X. As was mentioned in 3 4 a 
symmetry group G (eventually broken) must have the form of a direct product 
G = GF x G, for linearly realised G, or G 3 GF x G, with G/GF x G, acting nonlinearly$. 
Because the nonlinear transformations cannot correspond to an exact symmetry but 
rather to at least a spontaneously broken one (Coleman eta1 1969, Salam and Strathdee 
1969) then GO must belong to GFXG,. Obviously the flavour group GF does not 
destroy the quaternionic structure of X and the question of an exact symmetry 
subgroup of GF is determined fully by the dynamics$. Therefore we restrict our 
attention to the colour group G,. Firstly, we note that the group SU(2),c G, is realised 
in the Q-sector of the generalised QHS as R, C and Q-unitary operations (see 
3 3  2.7,3,4)  and as the identity in the @-sector. Thus it leaves the full geometrical 
structure of the QHS unaffected. However, in general, SU(2), transformations can be 
interpreted only as the active ones. Really, the SU(2), transformations of the 

f Because in our formalism pure states are represented by complex rays and there exists the superselection 
rule, the space of states does not coincide with 2 but rather is the direct sum of the coherent projective 
manifolds. 
f But rather in the ring of the field operators than in the space of states. 
§ Note, howelfer, that in a homomorphic realisation of GFX G, few elements from the centre of GF and G, can 
be identified as for example in the case U(l)xSU(N)+U(N) by the identification of the elements 
exp(irk/N) in U(1) and SU(N). Such a situation can have physical implications. 
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components fa of a vector f = e d a  cannot, in general, be compensated by trans- 
formations of the quaternionic units e, which must belong? to SO(3) (i.e. to the 
automorphism group of Q)-otherwise they break the algebraic structure of the QHS. 
However, if we take into account transformations U(2), 3 SU(2), then we see that the 
action of the form$ 

can be compensated by the transformation 

(eo, el,  e2, e3) + (eo, el  cos cp + e2 sin cp, e2 cos cp - e l  sin cp, e3) 

(belonging to SO(3)) of the quaternionic units. In addition, the phase transformations 
from U(l)o = {exp(Ae3)ao} do not change the states (complex rays). Summarising, only 
the transformations of the form 

belonging to U(1), X U(l ) , c  U(2), can be interpreted as the exact symmetry because 
they are @-unitary$, do not change the algebraical and gecmetrical structure of QHS 
together with the tensor multiplication rules and have both active and passive imple- 
mentation in the space of states (@-projective space). 

A question arises: how to interpret the other transformations of U(2),. To do this let 
us note that the automorphism group SO(3) of Q is isomorphic to U(2)/U(1). Thus with 
each transformation 

where U E U(2), we can associate a suitable automorphism R(U) E SO(3) of Q 
I eo = e o  e' = Re (20b)  

under the condition that U(1), coincides with the subgroup S0(2), c SO(3) of the 
rotations about the e3 axis in 69. Now, because the transformations from U(2),/U(l)o x 
U(l),- S0(3)/S0(2),  cannot be identified with an exact symmetry, they can be 
interpreted as passing to the unitary non-equivalent but isomorphic QHS. This set sf 
unitary non-equivalent QHS is globally homeomorphic to the homogeneous space 
S0(3)/S0(2),  i.e. to the surface of a sphere. From this point of view, the choice of a 
concrete QHS is the convention connected with the choice of a concrete basis11 {e,} in the 
quaternion field Q. Such a situation can be interpreted on field theory grounds as the 
spontaneous breaking1 (Kuo 1971a, b) of U(2), to the subgroup U(1)o X U(l)c.  

t The components fa form doublets of SU(2), whereas the quaternionic units eo and e form a singlet and 
triplet respectively. 
t The phase transformations fa +fa exp(Ae3), A ER, are R and C unitary (C unitarity is important from the 
physical point of view) but are not Q unitary. Nevertheless they do not change the Q geometrical structure of 
the QHS because Q-rays and the length of the vectors remain unaffected. 
$Note that the automorphisms of Q belonging to S0(3)/S0(2), are not implemented by 63 unitary 
(antiunitary) operators in QHS (for fixed @-solar product of course). 
/ /  More precisely with the choice of a concrete direction of the third axis (e3) in the quaternion algebra. 
7 In his paper Kuo (1971) investigated the relation between convention in quantum theories and broken 
symmetries. However his claim that the outer automorphisms of an exact symmetry group should be exact 
symmetries themselves is in my opinion rather questionable. 
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Now let us extend our consideration to the physically preferable G,= 
SU(3), 2 SU(2), case. Because the generalised QHS splits on the SU(3), triplet (anti- 
triplet) and singlet sectors, it is sufficient to restrict ourselves to the (unobservable) 
triplet one. Every vector from such a subspace has the form 

where the SU(3), triplet (fa, x) contains the doublet fa and singlet x of SU(2), while E ,  

and E,, form the basis in the ring (Q, C) (see 8 4), namely 

E o = ( ;  ;) e=( ;  ;) E O = ( O  0 0  E 3 = ( 0  0 0  

The C-scalar product of two vectors $ = (fm, x) and cp = (ga, 6) reads 

The automorphism group of the ring (Q, C) is the direct product SO(3) X Z2 where 
SO(3) acts in Q while the non-trivial element of the cyclic subgroup Z2 multiplies € 3  by 
-1. Now, it is easy to verify that only transformations of the form 

belonging to U(3) =) SU(3), are compensated by suitable automorphisms from SO(3) x 
Z2. Taking into account that the phase transformations from U(1), leave states 
invariant, we conclude that the exact symmetry form in this case is the U(l)  x U(1) 
group which has the following elements (in the complex language) 

The common subgroup of U(1) X U(1) and SU(3), contains elements of the form 

generated by the element 
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of the Lie algebra of SU(3),. Now, we note that the transformations from U(3)/U(2), 
break the algebraic structure of generalised QHS because there is not a homomorphism 
from U(3)/U(2), to the automorphism group SO(3) X ZZ of the ring (Q, e). Thus the 
symmetry breaking holds in two steps: firstly? to U(2), and secondly to U(l)  X U(1). At 
this point it is sensible to remark that only SU(3), colour degrees of freedom are 
algebraically confined: the generator of phase transformations should be associated 
with an unconfined charge like the baryonic number. It is interesting that in the field 
theory context, after gauging SU(3), we have as usual the octet of gauge fields (gluons) 
but only one, that associated with the exact subgroup of SU(3),, remains massless 
(coloured 'photon') while seven acquire masses because of the symmetry breaking. 
Thus in this case gauging of the colour SU(3), does not lead to the infrared problem 
(see, for example, Gross 1976). It may be surprising that we deal with the inadmissible 
eight-dimensional representation of SU(3),. However, in our formalism only states 
from QHS cannot form inadmissible multiplets while fields must appear in admissible 
products only. For this reason the gluon fields appear in QHS theory in admissible 
products, for example, with the quark fields via the covariant derivatives. On the other 
hand, the gluonic quanta are absent in the space of states (except eventual admissible 
bound states). Finally, we note that in the case of explicit symmetry breaking via the 
Higgs mechanism, the Higgs field must form a non-trivial representation of SU(3), and 
therefore the Higgs quanta cannot be observable. 

6. Conclusions 

Let us summarise the results. Our starting point consisted of the assumption of the 
quaternionic structure of the space of states. We have shown that the pure states should 
be identified with the complex rays in QHS. As a consequence of these two facts we have 
obtained the suitable form of the QHS tensor product (equation (15)). The appearance 
of a larger symmetry G 3 SU(2), leads to the suitable G,-dependence of the QHS tensor 
product (equation (19)). The only admissible$ symmetry groups have the form G F x  
SU(3r),, r odd. Furthermore the degrees of freedom of SU(3r), are algebraically 
confined. This is implied by the tensor multiplication rules§. For physical reasons the 
group SU(3), is preferred. It is broken down to the one-parameter subgroup. This 
causes the absence of the infrared problem in QHS theory. 

The other topics connected with QHS theory like the unification problem of strong 
and electro-weak interactions and investigation of a concrete dynamical model in this 
framework will be done elsewhere. 
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i. In this case the U(2), transformations have the form eio (0" 
$ Admissible for two reasons: mathematical and physical ($4 ) .  
5 Such a situation is nothing new in quantum physics. The tensor multiplication rules for the bosons or 
fermions are very similar: to obtain the space of states one must project the tensor product space on the 
subspace of the fully symmetrised or antisymmetrised wavefunctions. In other words the other than 
one-dimensional (fully symmetrical and antisymmetrical) representations of the permutation group are 
inadmissible. 

y )  where U C SU(2),. 
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Appendix. The scalar products in the quaternion algebra 

The quaternionic scalar product: (a, b)a = db E Q. The complex scalar product: 
(a, b)c = $(ab + 2) = AZB, E @. The real scalar product: (a ,  b)R =;(ab +s) = awbw E 
R. Here a, b E Q, a = ewaw = e,A,, p = 0,  1,2,3,  a = 0 , l .  The properties: 

(a, b + C ) w = ( a ,  b)w+(a,  c)a (a, b ) 2 = ( b ,  a ) ~  
(a ,  ab)A=i(b+bcA)Ia1* (a,  ba )A = (a ,  b)wa for CY E A. 
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